Chase Joyner

801 Homework 3

September 29, 2015

Problem 1:

Let $y_{11}, y_{12}, \ldots, y_{1 r}$ be $N\left(\mu_{1}, \sigma^{2}\right)$ and $y_{21}, y_{22}, \ldots, y_{2 s}$ be $N\left(\mu_{2}, \sigma^{2}\right)$ with all $y_{i j}$'s independent. Write this as a linear model. Find estimates of $\mu_{1}, \mu_{2}, \mu_{1}-\mu_{2}$, and σ^{2}. Using Appendix E, and Exercise 2.1, form an $\alpha=.01$ test for $H_{0}: \mu_{1}=\mu_{2}$. Similarly, form 95% confidence intervals for $\mu_{1}-\mu_{2}$ and μ_{1}. What is the test for $H_{0}: \mu_{1}=\mu_{2}+\Delta$, where Δ is some known fixed quantity? How do these results compare with the usual analysis for two independent samples?

Solution: Writing this as linear model, we have

$$
Y=X \beta+\epsilon
$$

where

$$
Y=\left[\begin{array}{c}
y_{11} \\
y_{12} \\
\vdots \\
y_{1 r} \\
y_{21} \\
\vdots \\
y_{2 s}
\end{array}\right]_{(r+s) \times 2}, \quad X=\left[\begin{array}{cc}
1 & 0 \\
1 & 0 \\
\vdots & \vdots \\
1 & 0 \\
0 & 1 \\
\vdots & \vdots \\
0 & 1
\end{array}\right]_{(r+s) \times 2}, \quad \beta=\left[\begin{array}{c}
\mu_{1} \\
\mu_{2}
\end{array}\right], \quad \epsilon=\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{r+s}
\end{array}\right]
$$

and $\epsilon \sim N_{r+s}\left(0, \sigma^{2} I\right)$. We now find estimates of μ_{1}, μ_{2}, and $\mu_{1}-\mu_{2}$. First, note that the o.p.m M onto $C(X)$ is

$$
M=X\left(X^{\prime} X\right)^{-} X^{\prime}=\left[\begin{array}{ll}
\frac{\mathbf{1}}{\mathbf{r}} r \times r & \mathbf{0}_{r \times s} \\
\mathbf{0}_{s \times r} & \underline{\mathbf{s}}_{s \times s}
\end{array}\right],
$$

where $\frac{\mathbf{1}}{\mathbf{r}}_{r \times r}$ represents an $r \times r$ matrix of all entries $\frac{1}{r}$ and similar idea for $\frac{\mathbf{1}}{\mathbf{s}}_{s \times s}$. Also notice that if ρ^{\prime} is the matrix

$$
\rho^{\prime}=\left[\begin{array}{cccccccc}
1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
1 & 0 & \cdots & 0 & -1 & 0 & \cdots & 0
\end{array}\right]_{3 \times(r+s)},
$$

then

$$
\rho^{\prime} X \beta=\left[\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\mu_{1}-\mu_{2}
\end{array}\right]
$$

By Corollary 2.2.3, the LSE of $\rho^{\prime} X \beta$ is

$$
\rho^{\prime} M Y=\left[\begin{array}{cccccc}
\frac{1}{r} & \cdots & \frac{1}{r} & 0 & \cdots & 0 \\
0 & \cdots & 0 & \frac{1}{s} & \cdots & \frac{1}{s} \\
\frac{1}{r} & \cdots & \frac{1}{r} & -\frac{1}{s} & \cdots & -\frac{1}{s}
\end{array}\right] Y=\left[\begin{array}{c}
\frac{1}{r} \sum_{i=1}^{r} y_{1 i} \\
\frac{1}{s} \sum_{i=1}^{s} y_{2 i} \\
\frac{1}{r} \sum_{i=1}^{r} y_{1 i}-\frac{1}{s} \sum_{i=1}^{s} y_{2 i}
\end{array}\right]=\left[\begin{array}{c}
\bar{y}_{1} \\
\bar{y}_{2} \\
\bar{y}_{1}-\bar{y}_{2}
\end{array}\right] .
$$

Therefore, an estimate of μ_{1} is $\widehat{\mu}_{1}=\bar{y}_{1}$, an estimate of μ_{2} is $\widehat{\mu}_{2}=\bar{y}_{2}$, and an estimate of $\mu_{1}-\mu_{2}$ is $\bar{y}_{1}-\bar{y}_{2}$. Now we find an estimate of σ^{2}. Since $r(X)=2$ and $\operatorname{Cov}(\epsilon)=\sigma^{2} I$, then by theorem 2.2.6,

$$
M S E=\frac{Y^{\prime}(I-M) Y}{(r+s)-2}=\frac{\sum_{i=1}^{r}\left(y_{1 i}-\bar{y}_{1}\right)^{2}+\sum_{i=1}^{s}\left(y_{2 i}-\bar{y}_{2}\right)^{2}}{(r+s)-2}
$$

is an estimate of σ^{2}. Now we form an $\alpha=.01$ test for $H_{0}: \mu_{1}=\mu_{2}$. First, rewrite the null hypothesis as $H_{0}: \mu_{1}-\mu_{2}=0$ and note by exercise 2.1 and Appendix E

$$
\frac{\lambda^{\prime} \widehat{\beta}-\lambda^{\prime} \beta}{\sqrt{M S E \lambda^{\prime}\left(X^{\prime} X\right)^{-\lambda}}} \sim t(1-\alpha / 2, d f E)
$$

Now if $\lambda^{\prime}=\left[\begin{array}{ll}1 & -1\end{array}\right]$, then under the null hypothesis,

$$
T=\frac{\bar{y}_{1}-\bar{y}_{2}-0}{\sqrt{M S E\left(\frac{1}{r}+\frac{1}{s}\right)}}
$$

should be an observation from $t(1-\alpha / 2, r+s-2)$. Therefore, reject H_{0} if $|T| \geq t(.995,(r+$ $s)-2)$. Also by Appendix E, a 95% confidence interval for $\mu_{1}-\mu_{2}$ is

$$
\left[\bar{y}_{1}-\bar{y}_{2} \pm t(.975,(r+s)-2) \sqrt{M S E\left(\frac{1}{r}+\frac{1}{s}\right)}\right]
$$

Also a 95% confidence interval for μ_{1} is

$$
\left[\bar{y}_{1} \pm t(.975,(r+s)-2) \sqrt{M S E \cdot \frac{1}{r}}\right]
$$

Lastly, we develop the test for $H_{0}: \mu_{1}=\mu_{2}+\Delta$. Similarly, we construct the statistic

$$
T=\frac{\bar{y}_{1}-\bar{y}_{2}-\Delta}{\sqrt{M S E\left(\frac{1}{r}+\frac{1}{s}\right)}}
$$

where

$$
M S E=\frac{\sum_{i=1}^{r}\left(y_{1 i}-\bar{y}_{1}\right)^{2}+\sum_{i=1}^{s}\left(y_{2 i}-\bar{y}_{2}\right)^{2}}{r+s-2}=\frac{(r-1) s_{1}^{2}+(s-1) s_{2}^{2}}{r+s-2}
$$

Reject H_{0} if $|T| \geq t(1-\alpha / 2,(r+s)-2)$. Therefore, these results are the same as the usual analysis for two independent samples.

Problem 2:

Let $y_{1}, y_{2}, \ldots, y_{n}$ be independent $N\left(\mu, \sigma^{2}\right)$. Write a linear model for these data. For the rest of the problem, use the results of Chapter 2, Appendix E, and Exercise 2.1. Form an $\alpha=0.01$ test for $H_{0}: \mu=\mu_{0}$, where μ_{0} is some known fixed number and form a 95% confidence interval for μ. How do these results compare with the usual analysis for one sample?

Solution: Writing this as a linear model, we have

$$
Y=X \beta+\epsilon
$$

where

$$
Y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right], \quad X=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]_{n \times 1}, \quad \beta=[\mu], \quad \epsilon=\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right]
$$

and $\epsilon \sim N_{n}\left(0, \sigma^{2} I\right)$. We showed in problem 1 that an estimate of μ is $\widehat{\mu}=\bar{y}$. Note that the projection matrix is

$$
M=X\left(X^{\prime} X\right)^{-} X^{\prime}=\left[\frac{\mathbf{1}}{\mathbf{n}}\right]_{n \times n}
$$

i.e. M is an $n \times n$ matrix of all entries $\frac{1}{n}$, and so the $M S E$ becomes

$$
M S E=\frac{Y^{\prime}(I-M) Y}{n-1}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}{n-1}=s^{2}
$$

Then, taking $\lambda^{\prime}=1$, we know that under the null hypothesis

$$
T=\frac{\bar{y}-\mu_{0}}{\sqrt{M S E\left(\frac{1}{n}\right)}}=\frac{\bar{y}-\mu_{0}}{\sqrt{s^{2} / n}}
$$

should be an observation from $t(.995, n-1)$. Therefore, reject H_{0} if $|T| \geq t(.995, n-1)$. A 95% confidence interval for μ is

$$
\left[\bar{y} \pm t(.975, n-1) \sqrt{M S E \cdot \frac{1}{n}}\right]
$$

These results coincide with the usual analysis for one sample.

Problem 3:

(a) Show that $A V A^{\prime}=A V=V A^{\prime}$.
(b) Show that $A^{\prime} V^{-1} A=A^{\prime} V^{-1}=V^{-1} A$.
(c) Show that A is the same for any choice of $\left(X^{\prime} V^{-1} X\right)^{-}$.

Solution: For this problem, $A=X\left(X^{\prime} V^{-1} X\right)^{-} X^{\prime} V^{-1}$, where V is a covariance matrix and hence is symmetric.
(a) It is clear that $A V=V A^{\prime}$ because

$$
A V=X\left(X^{\prime} V^{-1} X\right)^{-} X^{\prime}
$$

and

$$
V A^{\prime}=V\left(V^{-1} X\left(X^{\prime} V^{-1} X\right)^{-} X^{\prime}\right)=X\left(X^{\prime} V^{-1} X\right)^{-} X^{\prime}=A V .
$$

Now,

$$
\begin{aligned}
A V A^{\prime} & =\left(X\left(X^{\prime} V^{-1} X\right)^{-} X^{\prime} V^{-1}\right) V\left(X\left(X^{\prime} V^{-1} X\right)^{-} X^{\prime} V^{-1}\right)^{\prime} \\
& =X\left(X^{\prime} V^{-1} X\right)^{-}\left(X^{\prime} V^{-1} X\right)\left(X^{\prime} V^{-1} X\right)^{-} X^{\prime} \\
& =X\left(X^{\prime} V^{-1} X\right)^{-} X^{\prime} \\
& =A V=V A^{\prime} .
\end{aligned}
$$

Therefore, $A V A^{\prime}=A V=V A^{\prime}$.
(b) It is clear that $A^{\prime} V^{-1}=V^{-1} A$ because

$$
A^{\prime} V^{-1}=V^{-1} X\left(X^{\prime} V^{-1} X\right)^{-} X^{\prime} V^{-1}
$$

and

$$
V^{-1} A=V^{-1} X\left(X^{\prime} V^{-1} X\right)^{-} X^{\prime} V^{-1}=A^{\prime} V^{-1} .
$$

Now,

$$
\begin{aligned}
A^{\prime} V^{-1} A & =\left(X\left(X^{\prime} V^{-1} X\right)^{-} X^{\prime} V^{-1}\right)^{\prime} V^{-1}\left(X\left(X^{\prime} V^{-1} X\right)^{-} X^{\prime} V^{-1}\right) \\
& =V^{-1} X\left(X^{\prime} V^{-1} X\right)^{-}\left(X^{\prime} V^{-1} X\right)\left(X^{\prime} V^{-1} X\right)^{-} X^{\prime} V^{-1} \\
& =V^{-1} X\left(X^{\prime} V^{-1} X\right)^{-} X^{\prime} V^{-1} \\
& =A^{\prime} V^{-1}=V^{-1} A .
\end{aligned}
$$

Therefore, $A^{\prime} V^{-1} A=A^{\prime} V^{-1}=V^{-1} A$.
(c) Note that since V is positive definite, we can write $V^{-1}=Q^{\prime} Q$ for some Q. Then,

$$
X^{\prime} V^{-1} X=X^{\prime} Q^{\prime} Q X=(Q X)^{\prime}(Q X):=\left(X^{\star}\right)^{\prime} X^{\star}
$$

Now assume that G and H are generalized inverses of $\left(X^{\prime} V^{-1} X\right)$, i.e. of $\left(X^{\star}\right)^{\prime} X^{\star}$. Then, by Lemma B.43,

$$
\begin{aligned}
X^{\star} G\left(X^{\star}\right)^{\prime} & =X^{\star} H\left(X^{\star}\right)^{\prime} \\
Q X G X^{\prime} Q^{\prime} & =Q X H X^{\prime} Q^{\prime} \\
Q X G X^{\prime} Q^{\prime} Q & =Q X H X^{\prime} Q^{\prime} Q \\
Q X G X^{\prime} V^{-1} & =Q X H X^{\prime} V^{-1} \\
Q^{\prime} Q X G X^{\prime} V^{-1} & =Q^{\prime} Q X H X^{\prime} V^{-1} \\
V^{-1} X G X^{\prime} V^{-1} & =V^{-1} X H X^{\prime} V^{-1} \\
X G X^{\prime} V^{-1} & =X H X^{\prime} V^{-1} .
\end{aligned}
$$

Now, recall that $A=X\left(X^{\prime} V^{-1} X\right)^{-} X^{\prime} V^{-1}$. Then, we have $A=X G X^{\prime} V^{-1}=X H X^{\prime} V^{-1}$. Therefore, A is the same for any choice of $\left(X^{\prime} V^{-1} X\right)^{-}$.

Problem 4:

Consider the model

$$
Y=X \beta+b+e, \quad E(e)=0, \quad \operatorname{Cov}(e)=\sigma^{2} I,
$$

where b is a known vector. Show that Proposition 2.1.9: A linear estimate $a_{0}+a^{\prime} Y$ is unbiased for $\lambda^{\prime} \beta$ if and only if $a_{0}=0$ and $a^{\prime} X=\lambda^{\prime}$. is not valid for this model by producing a linear unbiased estimate of $\rho^{\prime} X \beta$, say $a_{0}+a^{\prime} Y$, for which $a_{0} \neq 0$. Hint: Modify $\rho^{\prime} M Y$.

Solution: We know that

$$
E\left(a_{0}+a^{\prime} Y\right)=a_{0}+a^{\prime} E(Y)=a_{0}+a^{\prime}(X \beta+b) .
$$

Then, take $a_{0}=-a^{\prime} b$ and $a^{\prime}=\rho^{\prime}$. This gives that

$$
E\left(a_{0}+a^{\prime} Y\right)=a_{0}+a^{\prime} X \beta+a^{\prime} b=a^{\prime} X \beta=\rho^{\prime} X \beta
$$

that is to say that $a_{0}+a^{\prime} Y$ is unbiased for $\rho^{\prime} X \beta$, but $a_{0} \neq 0$. Therefore, proposition 2.1.9 is not valid.

Problem 5:

Consider the model $y_{i}=\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+e_{i}$, where $e_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$. Use the data given below to answer (a) through (d).
(a) Estimate β_{1}, β_{2}, and σ^{2}.
(b) Give 95% confidence intervals for β_{1} and $\beta_{1}+\beta_{2}$.
(c) Perform an $\alpha=.01$ test for $H_{0}: \beta_{2}=3$.
(d) Find an appropriate P value for the test of $H_{0}: \beta_{1}-\beta_{2}=0$.

Solution: First, note that by the data given, we have

$$
Y=\left[\begin{array}{l}
82 \\
79 \\
74 \\
83 \\
80 \\
81 \\
84 \\
81
\end{array}\right], \quad X=\left[\begin{array}{cc}
10 & 15 \\
9 & 14 \\
9 & 13 \\
11 & 15 \\
11 & 14 \\
10 & 14 \\
10 & 16 \\
12 & 13
\end{array}\right]
$$

(a) Let $\beta=\left(\beta_{1}, \beta_{2}\right)^{\prime}$. Then, we know the LSE of β is

$$
\widehat{\beta}=\left(X^{\prime} X\right)^{-} X^{\prime} Y=\left[\begin{array}{l}
2.65 \\
3.74
\end{array}\right]
$$

Also, we know the LSE of σ^{2} is

$$
M S E=\frac{Y^{\prime}(I-M) Y}{n-r}
$$

where $M=X\left(X^{\prime} X\right)^{-} X^{\prime}$ and $r=r(X)$. Therefore,

$$
\widehat{\sigma}^{2}=M S E=\frac{Y^{\prime}(I-M) Y}{8-2}=4.70
$$

Therefore, our estimates are $\widehat{\beta_{1}}=2.65, \widehat{\beta_{2}}=3.74$, and $\widehat{\sigma}^{2}=4.70$.
(b) Let $\lambda_{1}=(1,0)$ and $\lambda_{2}=(1,1)^{\prime}$. Note that

$$
\left(X^{\prime} X\right)^{-}=\frac{1}{19712}\left[\begin{array}{cc}
1632 & -1168 \\
-1168 & 848
\end{array}\right]
$$

Then, a 95% confidence interval for β_{1} is

$$
\left[\widehat{\beta}_{1} \pm t(.975,8-2) \sqrt{M S E \cdot \lambda_{1}^{\prime}\left(X^{\prime} X\right)^{-} \lambda_{1}}\right]=[1.124,4.176]
$$

Also, a 95% confidence interval for $\beta_{1}+\beta_{2}$ is

$$
\left[\widehat{\beta}_{1}+\widehat{\beta}_{2} \pm t(.975,8-2) \sqrt{M S E \cdot \lambda_{2}^{\prime}\left(X^{\prime} X\right)^{-} \lambda_{2}}\right]=[5.937,6.843]
$$

(c) Take $\lambda=(0,1)^{\prime}$. Then, we calculate the test statistic

$$
T=\frac{\widehat{\beta}_{2}-3}{\sqrt{M S E \cdot \lambda^{\prime}\left(X^{\prime} X\right)^{-\lambda}}}=\frac{3.74-3}{\sqrt{4.70 \cdot \frac{848}{19712}}}=1.646
$$

Since $|T| \nsupseteq t(.995,6)=3.707$, we fail to reject H_{0}.
(d) Take $\lambda=(1,-1)$. Then, we calculate the test statistic

$$
T=\frac{\widehat{\beta}_{1}-\widehat{\beta}_{2}-0}{\sqrt{M S E \cdot \lambda^{\prime}\left(X^{\prime} X\right)^{-\lambda}}}=\frac{-1.09}{\sqrt{4.70 \cdot \frac{4816}{19712}}}=-1.017
$$

Then, the P value is $P=P(|T| \geq 1.017)=2 P(T<-1.017)=0.348$.

Problem 6:

Consider the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{11} x_{i 1}^{2}+\beta_{22} x_{i 2}^{2}+\beta_{12} x_{i 1} x_{i 2}+e_{i},
$$

where the predictor variables take on the values given. Show that $\beta_{0}, \beta_{1}, \beta_{2}, \beta_{11}+\beta_{22}$, and β_{12} are estimable and find (nonmatrix) algebraic forms for the estimates of these parameters. Find the MSE and the standard errors of the estimates.

Solution: For this model, we have

$$
Y=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5} \\
y_{6} \\
y_{7}
\end{array}\right], \quad X=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & -1 & 1 & 1 & -1 \\
1 & -1 & 1 & 1 & 1 & -1 \\
1 & -1 & -1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \quad \beta=\left[\begin{array}{l}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\beta_{11} \\
\beta_{22} \\
\beta_{12}
\end{array}\right] .
$$

It will be useful to identify a basis for $C\left(X^{\prime}\right)$. Notice that the row reduced form of X is

$$
R=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Then, a basis for $C\left(X^{\prime}\right)$ are the first five rows of R. Denote these rows as $r_{1}, r_{2}, r_{3}, r_{4}$, and r_{5}, respectively.
Take $\Lambda_{0}=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0\end{array}\right]^{\prime}$. Then,

$$
\Lambda_{0}^{\prime} \beta=\beta_{0}
$$

and $\Lambda_{0}=r_{1}-r_{2}-r_{3}-r_{4}$. Therefore, $\Lambda_{0} \in C\left(X^{\prime}\right)$ and so β_{0} is estimable.
Take $\Lambda_{1}=\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0\end{array}\right]^{\prime}$. Then,

$$
\Lambda_{1}^{\prime} \beta=\beta_{1}
$$

and $\Lambda_{1}=r_{2}-r_{5}$. Therefore, $\Lambda_{1} \in C\left(X^{\prime}\right)$ and so β_{1} is estimable.
Take $\Lambda_{2}=\left[\begin{array}{llllll}0 & 0 & 1 & 0 & 0 & 0\end{array}\right]^{\prime}$. Then,

$$
\Lambda_{2}^{\prime} \beta=\beta_{2}
$$

and $\Lambda_{2}=r_{3}$. Therefore, $\Lambda_{2} \in C\left(X^{\prime}\right)$ and so β_{2} is estimable.
Take $\Lambda_{3}=\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 0\end{array}\right]^{\prime}$. Then,

$$
\Lambda_{3}^{\prime} \beta=\beta_{11}+\beta_{22}
$$

and $\Lambda_{3}=r_{4}$. Therefore, $\Lambda_{3} \in C\left(X^{\prime}\right)$ and so $\beta_{11}+\beta_{22}$ is estimable. Lastly, take $\Lambda_{4}=\left[\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 1\end{array}\right]^{\prime}$. Then,

$$
\Lambda_{4}^{\prime} \beta=\beta_{12}
$$

and $\Lambda_{4}=r_{5}$. Therefore, $\Lambda_{4} \in C\left(X^{\prime}\right)$ and so β_{12} is estimable. To calcualte the estimates, we first calculate a generalized inverse to be

$$
\left(X^{\prime} X\right)^{-}=\frac{1}{48}\left[\begin{array}{cccccc}
16 & 0 & 0 & -8 & -8 & 0 \\
0 & 12 & 0 & 0 & 0 & 0 \\
0 & 0 & 12 & 0 & 0 & 0 \\
-8 & 0 & 0 & 7 & 7 & 0 \\
-8 & 0 & 0 & 7 & 7 & 0 \\
0 & 0 & 0 & 0 & 0 & 12
\end{array}\right] .
$$

Then, the estimates can be found by using the normal equations, which gives

$$
\widehat{\beta}=\left(X^{\prime} X\right)^{-} X^{\prime} Y=\left[\begin{array}{c}
\frac{1}{3}\left(y_{5}+y_{6}+y_{7}\right) \\
\frac{1}{4}\left(y_{1}+y_{2}-y_{3}-y_{4}\right) \\
\frac{1}{4}\left(y_{1}-y_{2}+y_{3}-y_{4}\right) \\
\frac{1}{8}\left(y_{1}+y_{2}+y_{3}+y_{4}\right)-\frac{1}{6}\left(y_{5}+y_{6}+y_{7}\right) \\
\frac{1}{8}\left(y_{1}+y_{2}+y_{3}+y_{4}\right)-\frac{1}{6}\left(y_{5}+y_{6}+y_{7}\right) \\
\frac{1}{4}\left(y_{1}-y_{2}-y_{3}+y_{4}\right)
\end{array}\right]=\left[\begin{array}{c}
\widehat{\beta}_{0} \\
\widehat{\beta}_{1} \\
\widehat{\beta}_{2} \\
\widehat{\beta}_{11} \\
\widehat{\beta}_{22} \\
\widehat{\beta}_{12}
\end{array}\right] .
$$

Then, we have the estimate of $\widehat{\beta}_{11}+\widehat{\beta}_{22}=\frac{1}{4}\left(y_{1}+y_{2}+y_{3}+y_{4}\right)-\frac{1}{3}\left(y_{5}+y_{6}+y_{7}\right)$. To find the MSE, we must first find $(I-M)$. We calculate M to be

$$
M=X\left(X^{\prime} X\right)^{-} X^{\prime}=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & 0 & 0 & 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & 0 & 0 & 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right]
$$

Then, we get $(I-M)$ to be

$$
I-M=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\
0 & 0 & 0 & 0 & -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\
0 & 0 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3}^{3}
\end{array}\right]
$$

Therefore, we have that MSE is

$$
M S E=\frac{Y^{\prime}(I-M) Y}{7-5}=\frac{1}{3}\left(y_{5}^{2}-y_{5} y_{6}-y_{5} y_{7}+y_{6}^{2}-y_{6} y_{7}+y_{7}^{2}\right)
$$

Lastly, we can calculate the SE of these estimates by

$$
S E=\sqrt{M S E \lambda^{\prime}\left(X^{\prime} X\right)^{-} \lambda}
$$

Using the lambdas when showing estimability, we have

$$
\begin{aligned}
S E\left(\widehat{\beta}_{0}\right) & =\sqrt{M S E \cdot \Lambda_{0}^{\prime}\left(X^{\prime} X\right)^{-} \Lambda_{0}}=\sqrt{M S E \cdot \frac{1}{3}} \\
S E\left(\widehat{\beta}_{1}\right) & =\sqrt{M S E \cdot \Lambda_{1}^{\prime}\left(X^{\prime} X\right)^{-} \Lambda_{1}}=\sqrt{M S E \cdot \frac{1}{4}} \\
S E\left(\widehat{\beta}_{2}\right) & =\sqrt{M S E \cdot \Lambda_{2}^{\prime}\left(X^{\prime} X\right)^{-} \Lambda_{2}}=\sqrt{M S E \cdot \frac{1}{4}} \\
S E\left(\widehat{\beta}_{11}+\widehat{\beta}_{22}\right) & =\sqrt{M S E \cdot \Lambda_{3}^{\prime}\left(X^{\prime} X\right)^{-} \Lambda_{3}}=\sqrt{M S E \cdot \frac{7}{12}} \\
S E\left(\widehat{\beta}_{12}\right) & =\sqrt{M S E \cdot \Lambda_{4}^{\prime}\left(X^{\prime} X\right)^{-\Lambda_{4}}}=\sqrt{M S E \cdot \frac{1}{4}} .
\end{aligned}
$$

